Speedup via batching

- A ciphertext encrypts an array of values
 - E.g., each is a bit or a small integer
- Array size determined by other parameters

 E.g., 378, 600, 682, 720, 1285, ...
- Homomorphic operations include:
 - Element-wise addition/subtraction, multiplication
 - Addition/subtraction, multiplication by constants
 - Cyclic/non-cyclic shifts
 - Also SELECT(A₁, A₂, pattern)
 - = pattern× A_1 + (1-pattern)× A_2

Performance

- In Jan-2012 we had an implementation that evaluated the AES-128 circuit in 36 hours
 - Note: AES does NOT support homomorphism, we just used the circuit that computes AES as an example
- With parallelism, we can encrypt ~20 blocks in one operation
 - vs. 20x200 cycles (approx. 2ms) for doing the same thing in the clear (in software)
 - "Only" 10 orders of magnitude slower

Recent Performance (Dec 2012)

Security parameter=80, circuit width=4 arrays

	Circuit "depth"	Array size	Time (hrs:min:sec)
	7	224	0:00:38
	14	480	0:02:49
	35	512	0:19:05
(*)	70	720	3:01:51
	84	2048	5:24:47

(*) maybe similar work to homomorphic AES

If true, ~12x speedup on our previous implementation